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The essence of X-ray fluorescence (XRF) spectra 
 quantitative analysis is that the concentration Ci of 
measured elements can be calculated by the intensity 
Ii of XRF characteristic spectra. The conversion rela-
tion of Ii and Ci is that real concentration =  apparent 
concentration *  correction factor[1]. Correction  factor 
is a key to confirm analysis elements concentration 
 accurately. There are two methods to determine the 
correction factor, namely, experimental correction and 
mathematic correction methods[2–4]. The purpose of 
these two methods is to eliminate the complex absorp-
tion and enhancement effect existing in components. 
However, the absorption and enhancement effect of 
components can be directly described by the overlap-
ping spectra. So influence factors must be considered in 
XRF spectra quantitative analysis.

Here the correction factor can be calculated using 
the partial-least squares (PLS) method. The merit of 
this method is that it can complete the mixed multi-
components analysis, characteristic spectra extraction, 
and regression modeling at the same time[5,6]. During 
this process, two aims would be achieved which are the 
characteristic spectra analysis and the correction of ele-
ments absorption and enhancement effect. The nonlin-
ear influence between elements concentration and their 
intensity could be compensated and corrected by ex-
tracting proper latent variable[7].

Generally, integrated characteristic spectra should 
be introduced while XRF spectra are analyzed us-
ing the PLS regression method. So there are too 
many XRF spectra variables in the PLS model, when 
multi- components are analyzed at the same time. 

These  spectra  increase the operational complexity and 
 calculation workload. And these are disadvantages 
to achieve the results quickly. Then the structure of 
PLS model should be predigested and spectra variable 
should be reduced. It is well-known that the weight ma-
trix W of spectra expresses the importance between the 
each spectrum and its concentration of corresponding 
component. So partial spectra can be removed, which 
contributes to the smaller element concentration. This 
is a very effective method to predigest PLS regression 
model by removing partial characteristic spectra.

The improved individual fitness of genetic algorithm 
(GA) is applied to variable optimization of PLS XRF 
spectra matrix. These characteristic spectra that have 
higher correlation with the component concentration 
can be extracted. In order to improve the rationality of 
PLS concentration matrix of many samples, Kennard–
Stone uniformity method can be applied to divide the 
training set and prediction set scientifically.

Figure 1 shows the principle of experiment system. 
The target of the mini X-ray tube was made using sil-
ver. Al filter was used as the filter of the target. In 
order to effectively excite heavy metal elements, work-
ing voltage and current were respectively set 40 kV and  
150 μA. The excitation time was set 120 s. The silicon 
drift detector was used and energy detection ranged 
from 1.5 to 25 keV and the resolution ratio was from 
145 to 260 eV (Mean: 5.90 keV).

A certain quantity of three kinds of chemical reagents of 
Ni(NO3)2·6H2O, Cu(NO3)2·3H2O, and ZnCl2 were weight-
ed by electronic scales. These three reagents were mixed 
symmetrically and added into the purified water having 
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a volume of 30 mL. Mixed solutions were obtained with 
a certain concentration of three elements. Then different 
volume solutions were measured by the micro- pipette en-
riched on the fiber glass films. These 15 fiber glass films 
were quickly dried by electrical heating. The concentra-
tions of Ni, Cu, and Zn element are listed in Table 1.

GA is a kind of random searching algorithm which 
simulates the natural selection and genetic mechanism 
in living system. It is suitable for dealing with the com-
plicated and nonlinear optimization problems. It is an 
ideal and overall nonlinear optimum algorithm. The al-
gorithm flow is shown in Fig. 2.

Different from traditional searching algorithm, GA 
begins to search based on the initial solution which is 
randomly generated. The new solution can be achieved 
by iteration operation step by step. The operation 
mainly includes selection, crossover, and mutation. 
Each individual in the population represents a solution 
of the problem (namely chromosome). The fitness is 
used to evaluate the stand or fall of the chromosome. 
A partial excellent individual can be selected from their 
father generation according to the fitness and the filial 
generation can be formed by crossover and mutation. 
After several generations evolve, the algorithm would 
converge at the best chromosome which is the optimal 
solution or second best solution[8]. 

The advantage of GA is that it lets the specific prob-
lem be coded into chromosome and be optimized. This 
algorithm does not refer to the parameters themselves. 
So it is not restricted by constraint conditions. The 
searching process starts from one set of solution and 
has the characteristic of latent and parallel searching. 
It can greatly reduce the possibility of trapping in local 
minimum. Optimization computation of the algorithm 
does not depend on the  gradient information. The tar-
get function does not require  continuum and derivable 
functions. So it can resolve combinational  optimization 
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Fig. 2. GA flow diagram.
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Fig. 1. Experimental setup.

Table 1. Concentration of Ni, Cu, and Zn Elements (Unit: μg cm–2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ni 103.16 153.26 191.58 290.96 268.21 429.55 839.32 230.25 2142.01 2276.90 2369.43 3046.41 758.96 1713.61 344.84

Cu 136.48 202.75 253.43 384.90 354.81 568.25 1110.32 280.47 2833.64 3012.09 3134.49 4030.06 1004.03 2266.91 456.18

Zn 122.58 182.11 227.63 345.72 318.69 510.41 997.29 270.29 2545.19 2705.48 2815.42 3619.83 901.83 2036.15 409.74

problems of large scale and nonlinear which the 
 traditional searching method cannot resolve[9].

It can be seen from Table 1 that the concentration 
change in Ni, Cu, and Zn is inconformity. And with 
the increase in sample numbers and the enlargement of 
concentration change in elements, it is difficult to divide 
the training set and prediction set reasonably. In order 
to improve the accuracy of the established PLS concen-
tration matrix, the Kennard–Stone uniformity method 
was used to divide the combination of 15  samples. The 
partition result of the training set and prediction set 
is shown in Table 2, when the sample number of the 
training set is 12.
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variables are not optimized. At the same time, this 
method can only calculate the predicted correlation  
coefficients of the single component and does not con-
sider the result of interaction of multi- components 
 operation.

In order to avoid the phenomenon that the model 
would be excessively fit by increasing the principal 
component and considering the multi-components to-
gether, the calculation method of fitness is modified. 
The cross-validation parameter (prediction error square 
summation, PRESS) and correlation coefficients (R2) 
are banded together to calculate individual fitness. 

 = ∗2 2
predk kQ P R , (1)

where k is the number of principal components. 2
kP  can 

be obtained according to PRESS:

 2 1 PRESS /PRESSMAX.k kP = −  (2)

PRESSk is the PRESS of k principal components of 
multi-elements. 
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The number of the principal components can be con-
firmed by the method of cross-effective validation[11]. The 
number would be increased if PRESSk/PRESSk-1≤ 0.952.

In order to decrease the population size and shorten 
the iteration time in each inheritance, parameters are 
set as follows: maximum generation is 11, population 
size is 32, crossover probability is 50%, and mutation 
probability is 0.5%. “Leaving three” cross-validation 
method of PLS regression is used to setting fitness.  
The maximum principal components are 12. Iteration 
operation is applied once in PLS regression. The char-
acteristic spectra of Ni, Cu, and Zn elements of train-
ing set in Table 2 are extracted by means of the above 
genetic parameters. The result of fitness is shown in 
Fig. 3.

Figure 3 shows the variable number and fitness of 
each population in 32 populations, when the  generation 
reaches 11. The number of selected spectra concen-
trates between 63 and 80 in these 32 populations and 
the minimum fitness can reach 165.52.

Table 2 also shows that the concentration range of 
the training set covers the whole concentration range of 
the prediction set.

The initialization of prediction variables model is 
completed through random establishing of a series of 
character string of binary coding. Each character string 
delegates one predicted variable of XRF spectra in-
tensity. Here 1 denotes that these prediction spectra 
variables are selected by the model and 0 denotes that 
these prediction spectra variables are not selected. 
The number of prediction variables could be confirmed 
through the statistics of the number of string 1 in the 
character strings.

Fitness describes the stand or fall of model perfor-
mance of the corresponding individual. When the fit-
ness is higher, the probability of the reserved individual 
is higher and it could be copied to the next generation. 
However, when the fitness is lower, the probability of 
the deleted individual is higher. Therefore, the evalua-
tion of fitness decides the searching direction of GA and 
directly determines the performance of the algorithm. 
Here, the calculation method of fitness is  modified. The 
evaluation function of fitness can be obtained accord-
ing to the characteristic of multi-collinearity regression 
analysis of PLS.

The essence of crossover is inheritance. Two individu-
als are randomly selected from the population of fa-
ther generation. According to a certain regulation and 
probability, character strings are exchanged among 
bits. The exchange manner of two points is applied. 
The crossover probability is set 50%. The bit of pa-
rameter strings is randomly forcibly exchanged during 
the mutation. Then the searching direction is changed 
and the searching space is enlarged. The probability of 
mutation should not be too large and is 0.005% in this 
experiment.

As we know, GA can achieve the global optimum 
searching and the PLS method can extract the principal 
component which has the multi-collinearity  question. 
So the individual fitness can also be calculated using 
the index which expresses the performance of the PLS 
model during the process of the GA model. Hasegawa 
et al.[10] calculated the individual fitness using the maxi-
mum of correlation coefficients. Generally during the 
PLS modeling, the ability of fitting would be enforced 
by increasing the principal component and the correla-
tion coefficient ( 2

predr ) would approach 1. But this meth-
od only fits to the modeling of the selected variables. 
The phenomenon of excessive fitting would appear by 
increasing the principal component when the  modeling 

Table 2. Result of the Training Set and the 
Prediction Set

Training Set 1  3  5  6  7  9  10  11  12  13  14  15

Prediction Set 2  4  8
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and standard value of No. 2 sample is largest among 
three samples. The phenomenon is mainly caused by 
uneven sample enrichment. The linearity fitting rela-
tionship of Ni, Cu, and Zn elements can be obtained 
according to their real values and predicted values. The 
results are shown in Fig. 9. It can be seen that the cor-
relation coefficient is bigger than 0.99 after spectra cor-
rection and optimization. This explains that they have 
good  correlation.

The score figure of the first and second principal 
components in Fig. 9 also expresses that there are no 
abnormal values during the 95% confidence level in the 
whole data set (including training samples and predic-
tion samples). 

When XRF spectra are not optimized, the calculation 
results of Ni, Cu, and Zn are shown in Fig. 10. Com-
paring with Fig. 8, the correlation of three elements 
 averagely decreases by about 7%, root mean square 
error of calibration (RMSEC) averagely increases by 

Figure 4 shows that using variable number of  different 
generation has a certain fluctuation. As a whole, it can 
be seen that the variable number presents downtrend 
when the reproduction generation exceeds eight. The 
number reaches minimum when the reproduction gen-
eration get to 11. 

Figure 5 shows that GA could finally confirm the se-
lection time of each XRF spectra according to their 
importance. The more a spectrum is selected, the more 
it is important, vice versa.

Although characteristic spectra can be optimized by 
increasing the number of generation, the maximum 
genetic algebra should not be too big. Otherwise, the 
phenomenon of excessive fitting would happen which 
will make partial useful XRF spectra lose. It can be 
seen from Figs. 6 and 7 that the information reflect-
ing the character of spectra peak has lost more when 
the spectra have eliminated more from generation 51 
to 101, which is the disadvantage to construct PLS 
 prediction model.

PLS regression model can be constructed and 
 elements concentration of prediction set can be cal-
culated after the XRF characteristic spectra are  
optimized.  Figure 8 shows that the characteristic spec-
tra information extracted from the elements of training 
set takes up 99.45% of whole spectra when the princi-
pal  components are 3. Then it can meet the require-
ment when the principal components are 3. According 
to the PLS model, the concentration of prediction set is 
calculated and the results are shown in Table 3. There 
is a phenomenon that the error between predicted value 

Fig. 4. Average variables used in each generation. Fig. 7. Models with variable at generation 101.

Fig. 5. Models with variable at generation 11.

Fig. 6. Models with variable at generation 51.

 

Fig. 3. Fitness at generation 11.
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Fig. 8. Principal components and characteristic information 
proportion.

Fig. 9. Contrast of predicted values and real values of three 
elements and the first and the second principal components of 
PLS model for optimized XRF spectra.

Fig. 10. Contrast of predicted values and real values of three 
elements and the first and the second principal components of 
PLS model for non-optimized XRF spectra.

about 79.32, and root mean square error of cross- 
validation (REMSECV) averagely increases by about 
14.2. This also explains that optimized XRF charac-
teristic spectra are benefits to improve the prediction 
ability of PLS regression model.

In conclusion, in order to decrease the influence of 
elements absorption and enhancement effect during 
XRF spectra quantitative analysis, PLS method is ap-
plied to analyze the concentration of metal elements 
enriched on fiber glass film. The aim of this method 
is to extract partial characteristic spectra which have 
the best relevance with the elements concentration. 
By this means, the multi-elements characteristic spec-
tra matrix is predigested during the process of PLS 
modeling. The fitness is modified according to the 
cross- validation parameter (PRESS) and correlation  
coefficients (R2). This method can effectively avoid 
the phenomenon of excessive fitting by increasing the 
 principal component.

The experimental result indicates that optimized 
XRF characteristic spectra are benefits to improve the 
prediction ability of PLS regression model. This meth-
od is best fit for XRF overlapping spectra  analysis.

Table 3. Prediction Results and Errors of Ni, Cu, 
and Zn

Index Ni Cu Zn

No. 2

Standard Value 153.26 202.75 182.11

Predicted Value 102.46 153.28 139.68

Error 50.80 49.47 42.43

No. 4

Standard Value 290.96 384.90 345.72

Predicted Value 267.58 354.35 315.77

Error 23.38 30.55 29.95

No. 8

Standard Value 230.25 280.47 270.29

Predicted Value 213.05 261.92 249.05

Error 17.20 18.55 21.24


